
2.2 Supplement to Chapter 2: even and odd permutations

Definition 2.2.1. The group consisting of all permutations of a set of n elements is called the symmetric
group of degree n and denoted Sn.

REMARKS

1. The order of Sn is n!, the number of permutations of n objects (read this as “n factorial”).

2. We often think of the n elements being permuted as the first n positive integers 1, 2, . . . ,n,
but this is not intrinsic to the definition of Sn. It doesn’t really matter what these elements
are called as long as they have distinct labels.

3. Although the terminology is potentially problematic, it is important not to confuse the term
“symmetric group” with groups of symmetries of (for example) regular polygons.

This section is mostly about how to represent permutations and how to do calculations with
them. Later in the chapter we will use this information to deduce some nice properties of the
symmetric groups.

An element of S4 is a permutation of the set {1, 2, 3, 4}; this means a function from that set to
itself that sends each element to a different image, and hence shuffles the four elements. In S4, a
basic way to represent the permutation 1 → 1, 2 → 4, 3 → 2, 4 → 3 is by the array

�
1 2 3 4
1 4 2 3

�
.

Representing permutations like this we can practise multiplying (or composing) them. In these
notes we will use the convention that for permutations σ and τ, the product στ means “σ after τ
or σ ◦ τ, i.e. that the factor that is written on the right is applied first. This is not a universally
agreed convention and people use both possible interpretations. For this course it is probably a
good idea that we all share the same interpretation to avoid confusion, but in general all that is
important is that you state in which order you are considering the composition to take place and
that you are consistent.

Example 2.2.2. In S5, suppose that

σ =

�
1 2 3 4 5
2 3 5 4 1

�
, τ =

�
1 2 3 4 5
4 2 3 5 1

�
.

Calculate the products στ and τσ.

Solution: To calculate στ, we apply τ first and then σ. Remember that this is just a composition
of functions.

• τ sends 1 to 4, then σ sends 4 to 4. So στ sends 1 to 4.

• τ sends 2 to 2, then σ sends 2 to 3. So στ sends 2 to 3.

• τ sends 3 to 3, then σ sends 3 to 5. So στ sends 3 to 5.

• τ sends 4 to 5, then σ sends 5 to 1. So στ sends 4 to 1.

• τ sends 5 to 1, then σ sends 1 to 2. So στ sends 5 to 2.

We conclude that

στ =

�
1 2 3 4 5
2 3 5 4 1

��
1 2 3 4 5
4 2 3 5 1

�
=

�
1 2 3 4 5
4 3 5 1 2

�

τσ =

�
1 2 3 4 5
4 2 3 5 1

��
1 2 3 4 5
2 3 5 4 1

�
=

�
1 2 3 4 5
2 3 1 5 4

�
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This array format is not the only way of representing a permutation and not always the most
useful way. Another way of thinking about a permutation π is by thinking about how it moves
the elements of the set around, by starting with a single element and looking at the sequence of
images when you repeatedly apply π to it. Eventually you will have to get back to the original
element. Consider the following example in S14.

π =

�
1 2 3 4 5 6 7 8 9 10 11 12 13 14

11 9 8 2 5 1 12 14 6 7 3 13 10 4

�

Start with the element 1 and look at what happens to it when you repeatedly apply π.

• First you get 1 → 11;

• Then 11 → 3;

• Then 3 → 8;

• Then 8 → 14;

• Then 14 → 4;

• Then 4 → 2;

• Then 2 → 9;

• Then 9 → 6;

• Then 6 → 1.

After nine applications of π we arrive back at 1 and this is the first time we have a repetition in the
list. This will happen every time: the list can’t continue indefinitely without repetition because
there are only finitely many elements being permuted. Suppose that after starting at 1 the first
repetition occurs at Step k, after k applications of π. Then we have

1 → a1 → a2 → · · · → ak−1 →

where 1,a1, . . . ,ak−1 are distinct. The next element (ak) is a repeat of one of these. However it
can’t be a repeat of a1, because 1 is the only element whose image under π is a1, and ak−1 �= 1.
The same applies to a2, . . . ,ak−1. So it must be that 1 (the element where we started) is the first
element to be repeated, and that we close the circle that started with 1. In our example above
there were nine distinct elements in the sequence that started at 1. So the permutation π produces
the following cycle:

1 → 11 → 3 → 8 → 14 → 4 → 2 → 9 → 6 → 1

This cycle is often written using the following notation:

(1 11 3 8 14 4 2 9 6).

Note that 1 is not written at the end here. The above notation means the permutation (of 14
elements in this case) that sends 1 to 11, 11 to 3, etc, and sends 6 back to 1. There is nothing in
the notation to indicate that we are talking about an element of S14 - this has to be clear from the
context. Also, it is understood that elements that are not mentioned in the above notation are
fixed by the permutation that it denotes. The permutation (1 11 3 8 14 4 2 9 6) is an example of
a cycle of length 9 in S14. It is not the same as the permutation π that we started with, but it does
coincide with π on the set of nine elements that can be obtained by starting at 1 and repeatedly
applying π. This set is called the orbit of 1 under π.

The point of this discussion is that π can be written as a product (or composition) of disjoint
cycles in S14. The next step towards doing so is to look for the first element (in the natural order)
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of our set that is not involved in the first cycle. This is 5. Go back to π and see what happens to 5
under repeated application of π. We find that

5 → 5,

so 5 is fixed by π. We could think of this as a cycle of length 1.
There are still some elements unaccounted for. The first one is 7. Looking at the orbit of 7

under π, we find
7 → 12 → 13 → 10 → 7

so we get the cycle (7 12 13 10) of length 4. Note that this has no intersection with the previous
cycles.

Our conclusion is that π can be written as the product of these disjoint cycles:

π = (1 11 3 8 14 4 2 9 6)(7 12 13 10).

If you like you can explicitly include (5) as a third factor, but the usual convention is not to bother
including elements that are fixed in expressions of this nature, if an element does not appear it is
understood to be fixed.

Notes

1. The representation of π in “array” format can easily be read from its representation as a
product of disjoint cycles. For example if you want to know the image of 8 under π, just
look at the cycle where 8 appears - its image under π is the next element that appears after
it in that cycle, 14 in this example. If your element is written at the end of a cycle, like 10 in
this example, then its image under π is the number that is written in the first position of that
same cycle (so 10 → 7 here). An element that does not appear in any of the cycles is fixed
by the permutation.

2. The statement above says that π can be effected by first applying the cycle (7 12 13 10)
(which only moves the elements 7, 12, 13, 10) and then applying the cycle (1 11 3 8 14 4 2 9 6)
(which only moves the elements 1, 11, 3, 8, 14, 4, 2, 9, 6). Since these two cycles operate on dis-
joint sets of elements and do not interfere with each other, they commute with each other
under composition - it does not matter which is written first in the expression for π as a
product of the two of them. So we could equally well write

π = (7 12 13 10)(1 11 3 8 14 4 2 9 6).

3. The expression for a permutation as a product of disjoint cycles is unique up to the order
in which the cycles are written. This means that the same cycles must appear in any such
expression for a given permutation, but they can be written in different orders.

It might also be worth mentioning that a given cycle can be written in slightly different
ways, since it doesn’t matter which element is taken as the “starting point”. For example
(7 12 13 10) and (13 10 7 12) represent the same cycle.

Definition 2.2.3. The expression of an element of Sn as a product of disjoint cycles partitions the set
{1, 2, . . . ,n} into disjoint orbits. In the above example there are three orbits:

{1, 2, 3, 4, 6, 8, 9, 11, 14}, {5}, {7, 10, 12, 13}.

If two elements belong to the same orbit for a permutation π, it means that some power of π
takes one of those elements to the other. Note that fixed points do count as orbits. So the identity
element of Sn has n orbits each consisting of a single element. A permutation in Sn has just one
orbit if it is a single cycle involving all n elements.

It is good idea to practise moving between the “array representation” and “disjoint cycle repre-
sentation” of a permutation. There is another way of representing permutations that is sometimes
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useful. We could think of the “simplest” type of non-identity permutation as being one that just
swaps two elements and leaves the rest fixed. Such a permutation is called a transposition. The
transposition that (for example) interchanges 1 and 2 and leaves all the other elements fixed is
denoted, in typical cycle notation, as (1 2).

Theorem 2.2.4. Every element of Sn can be expressed as a product of transpositions.

Rather than giving a formal general proof of Theorem 2.2.4, we will look at a way of expressing
a given permutation as a product of transpositions. This contains all that would be required for a
fully detailed proof, without having to worry about setting up cumbersome general notation.

Example 2.2.5. In S8 (for example), the cycle (2 4 7 6 8) can be written as the product

(2 8)(2 6)(2 7)(2 4)

of four transpositions.
To see this, just look at what happens to each element under the proposed composition of transpositions.
Start with 2. We have:

2 → 4.

Move on to 4:
4 → 2 → 7.

Then 7:
7 → 2 → 6.

Then 6:
6 → 2 → 8.

Finally 8:
8 → 2.

So overall our composition of transpositions amounts to the cycle

2 → 4 → 7 → 6 → 8 → 2,

as we wanted.

Note: The expression for a given cycle (or permutation) as a product of transpositions is not
unique. For example we could write the 4-cycle above equally well as (4 7 6 8 2), then using the
same technique to write it as a product of transpositions would result in

(4 2)(4 8)(4 6)(4 7),

which does not involve the same transpositions as our example above, although it is the same
permutation.

Example 2.2.6. In S12, write the element
�

1 2 3 4 5 6 7 8 9 10 11 12
11 4 6 1 10 7 8 12 9 3 2 5

�

as a product of transpositions.

Solution: First write it as a product of disjoint cycles.

(1 11 2 4)(3 6 7 8 12 5 10).

Then as a product of transpositions:

(1 4)(1 2)(1 11)(3 10)(3 5)(3 12)(3 8)(3 7)(3 6).

This expression involves nine transpositions.
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Exercise 2.2.7. How many of the n! elements of Sn are transpositions?
How many are 3-cycles? (i.e. cycles of length 3, like (1 2 3)).

The number of transpositions involved in an expression for a permutation as a product of
transpositions is not uniquely determined either, since for example (2 3) and (1 3)(2 3)(1 2) are
the same permutation (check this). However, it is true that no permutation can be written both as
the product of an even number and an odd number of permutations. To prove this is not difficult
but involves a bit of fussing. This is our next task.

Theorem 2.2.8. A permutation in Sn cannot be expressed both as the product of an even number and an
odd number of transpositions.

Proof. Let π ∈ Sn, and suppose that π can be written as a product of s transpositions, i.e.

π = τsτs−1 . . . τ2τ1,

where each τi is a transposition. Let r be the number of orbits of π (i.e. the number of cycles in the
expression for π as a product of disjoint cycles, including fixed points). Then r is fully determined
by π and so is n− r (this means that the numbers r and n− r do not depend on any choice about
how π is represented). We will show that the numbers s and n − r are either both even or both
odd.

We will do this by induction on s, the starting point being s = 0. If s = 0 then π is the identity
permutation, r = n and n− r = 0. So in this case s and n− r are both zero, they are both even.

The case s = 1 is also manageable. If s = 1, then π is a single transposition, so it has one cycle
of length 2 and n − 2 fixed points. In this case r = n − 1 and n − r = 1, so s and n − r are both
equal to 1, they are both odd.

Now suppose that s and n−r have the same parity for all values of s up to s = k, and consider
the case s = k+ 1. This means

π = τk+1τk . . . τ2τ1,

where each τi is a transposition. Let τk+1 = (1 2) (there is no loss of generality here since we can
relabel the elements that are being permuted if necessary), let π � be the element of Sn given by

π � = τk . . . τ2τ1,

and let r � be the number of orbits of π �. We will show that the number r of orbits of π differs from
r � by 1.
Case 1: Suppose first that 1 and 2 belong to the same orbit in π �, and write the cycle corresponding
to this orbit as (1 a2 . . .al 2 al+m . . .am). Then we have (check this)

(1 2)(1 a1 . . . al 2 al+1 . . .am) = (1 a1 . . .a1)(2 al+1 . . .am).

So the orbit of π � that contained the elements 1 and 2 is split into two separate orbits by the
multiplication by τk+1. Other orbits of π � are unaffected since they do not involve 1 or 2. So in
the case where 1 and 2 belong to the same orbit of π �, we have r = r � + 1.
Case 2: Suppose that 1 and 2 belong to different orbits of π �, and write the cycles corresponding
to these orbits as

(1 a1 . . .al), (2 b1 . . .bm)

where none of the ai is equal to any of the bj. Then (check that)

(1 2)(1 a1 . . .al)(2 b1 . . .bm) = (1 a1 . . .al 2 b1 . . .bm),

so the effect of the multiplication by (1 2) is to combine these two orbits into one. As in Case 1
there is no effect on the other orbits of π �. So in the case where 1 and 2 belong to different orbits
of π �, we have r = r � − 1.

By our induction hypothesis, n−r � has the same parity as k. The above argument above shows
that n − r differs from n − r � by 1, and hence it must have the same parity as k + 1 which is the
number of transpositions in π.
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We have proved that the parity (oddness or evenness) of the number of transpositions in any
expression for π as a product of transpositions is the same as the parity of n− r. In particular, for
a given π, this number of transpositions is always even or always odd.

Definition 2.2.9. An element of Sn is called even if it can be written as the product of an even number
of transpositions, and odd if it can be written as the product of an odd number of transpositions. Every
element of Sn is either even or odd (not both).

Note that the inverse of an even permutation is again even (it involves the same transpositions
listed in the opposite order), and that the product of two even permutations is even. Moreover, the
identity permutation is even, since it can be written as the “product of zero transpositions” or as
the square of any transposition. Thus the set of even permutations of n objects is a subgroup of Sn.
This is known as the alternating group of degree n and denoted by An. Directly counting the even
permutations of a set of n elements is a more difficult task than counting all the permutations.
However, by showing that the even permutations can be put in one-to-one correspondence with
the odd permutations, we can show that exactly half of all the elements of Sn are even.

Theorem 2.2.10. The order of the alternating group An is
n!
2

.

Proof. Let the numbers of even and odd permutations in Sn be k1 and k2 respectively, and let
τ denote the transposition (1 2). For every even permutation π, we have a corresponding odd
permutation πτ. Thus there are at least as many odd permutations as even permutations, k1 � k2.

On the other hand, for every odd permutation σ we have the corresponding even permutation
στ. So there are at least as many even permutations as odd permutations, k2 � k1.

It follows that k1 = k2 and hence that the even permutations and odd permutations each
account for half of all permutations. Thus

|An| =
n!
2

.
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